## DOMINOS - CONVERTING BETWEEN FRACTIONS, DECIMALS AND PERCENTAGES

Cut out (and I would suggest laminate) the dominos below.
The students use these to have a game of dominos where they match fractions with decimals and percentages. E.g. 0.5 can be matched with $50 \%$ or $1 / 2$. There are different ways of playing dominos, below are basic game instructions.

## 2-6 Players

Domino Instructions: Place all dominos face down. Each player chooses 7 dominos - the aim of the game is to get rid of all your dominos.
*Turn one domino face up. The first player then has to find one of their dominos which has a matching end to one of the face-up dominos ends. Place this end touching the matching end of the face-up domino. (e.g. 0.5 can be matched with $50 \%$ or $1 / 2$ ). Blanks go with anything.
*The next player then goes and so on until one player gets rid of all their dominos.
*If a player can not go (they have no matching pieces) they must pick up a face-down domino and miss their turn.


## DOMINOS - CONVERTING BETWEEN FRACTIONS, DECIMALS AND PERCENTAGES

| ¢े | $\stackrel{\bigcirc}{+}$ | $\cdots$ | 익앙 | - ${ }^{\text {O }}$ | $m \mid \nabla$ | N |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 유ํ | $m \mid m$ | 수N | $\checkmark \mid \sim$ | $n / n$ | $\neg \mid m$ | $\stackrel{\square}{0}$ |
| $n$ 0 0 | $N \sim$ | ำ | $m \mid \stackrel{O}{-}$ | $\stackrel{\bigcirc}{-}$ | $\cdots \mid m$ | $\stackrel{N}{N}$ |
| $\cdots$ | n | 앙윽 | ి్లి | ¢0 | $\neg \mid \sim$ | $\sim \sim$ |
| $\nabla \mid \sim$ | +\|O | $\sim \bullet$ | $\stackrel{+}{+}$ | $\cdots \mid m$ | $\pm$ | $m \mid m$ |
| $\stackrel{+}{0}$ | $\checkmark \mid \nabla$ | $\begin{array}{l\|l} \hline \text { O- } \\ \text { ন- } \end{array}$ | $\stackrel{+}{-}$ | $\checkmark$-1* | $\stackrel{m}{m}$ | $\bigcirc$ |
| $\stackrel{\text { ®े }}{\text { ® }}$ | ぺ | $\checkmark \stackrel{\bigcirc}{*}$ | oે | m | 안욱 |  |
|  | $m$ |  |  | $!$ | - | $\neg \mid N$ |
| $\sim \mid 0$ | $E$ |  |  |  |  |  |
| $\bigcirc$ | $\stackrel{1}{N}$ | $m \mid \stackrel{O}{-1}$ |  | ¢0 | 우N |  |

## DOMINOS - MULTIPLICATION

Cut out (and I would suggest laminate) the dominos below.
The students use these to have a game of dominos where they match fractions with decimals and percentages. E.g. 4X5 can be matched with 20. There are different ways of playing dominos, below are basic game instructions.

## 2-6 Players

Domino Instructions: Place all dominos face down. Each player chooses 7 dominos - the aim of the game is to get rid of all your dominos.
*Turn one domino face up. The first player then has to find one of their dominos which has a matching end to one of the face-up dominos ends. Place this end touching the matching end of the face-up domino. (e.g. 0.5 can be matched with $50 \%$ or $1 / 2$ ). Blanks go with anything.
*The next player then goes and so on until one player gets rid of all their dominos.
*If a player can not go (they have no matching pieces) they must pick up a face-down domino and miss their turn.


## DOMINOS - CONVERTING BETWEEN FRACTIONS, DECIMALS AND PERCENTAGES



| $1 \times 1=1$ | $2 \times 2=4$ | $3 \times 3=9$ | $4 \times 4=16$ | $5 \times 5=25$ | $6 \times 6=36$ | $7 \times 7=49$ | $8 \times 8=64$ | $9 \times 9=81$ | $10 \times 10=100$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $1 \times 2=2$ | $2 \times 3=6$ | $3 \times 4=12$ | $4 \times 5=20$ | $5 \times 6=30$ | $6 \times 7=42$ | $7 \times 8=56$ | $8 \times 9=72$ | $9 \times 10=90$ |  |
| $1 \times 3=3$ | $2 \times 4=8$ | $3 \times 5=15$ | $4 \times 6=24$ | $5 \times 7=35$ | $6 \times 8=48$ | $7 \times 9=63$ | $8 \times 10=80$ |  |  |
| $1 \times 4=4$ | $2 \times 5=10$ | $3 \times 6=18$ | $4 \times 7=28$ | $5 \times 8=40$ | $6 \times 9=54$ | $7 \times 10=70$ |  |  |  |
| $1 \times 5=5$ | $2 \times 6=12$ | $3 \times 7=21$ | $4 \times 8=32$ | $5 \times 9=45$ | $6 \times 10=60$ |  |  |  |  |
| $1 \times 6=6$ | $2 \times 7=14$ | $3 \times 8=24$ | $4 \times 9=36$ | $5 \times 10=50$ | Some multiplication facts are not shown |  |  |  |  |
| $1 \times 7=7$ | $2 \times 8=16$ | $3 \times 9=27$ | $4 \times 10=40$ |  |  |  |  |  |  |
| $1 \times 8=8$ | $2 \times 9=18$ | $3 \times 10=30$ | For example |  |  |  |  |  |  |
| $1 \times 9=9$ | $2 \times 10=20$ |  |  |  | $3 \times 4=12$, this is the same answer as $4 \times 3=12$ (so only $3 \times 4$ is shown) |  |  |  |  |
| $1 \times 10=10$ | $7 \times 2$ gives the same answer as $2 \times 7$ |  |  |  |  |  |  |  |  |

## FACTS TO LEARN <br> $10 x$, and $9 x$ ) $2 x, 5 x$, <br> (If you know your 1x, YOU MAY

# THANKYOU FOR DOWNLOADING THIS PRODUCT. 

## IF you Enjoyed IT PLEASE LEAVE FEEDBACK OR CHECK OUT MY OTHER PRODUCTS ON:

https://www.teacherspayteachers.com/Store/Waterfall-Learning
© 2015 C. Pedley: Waterfall Learning. All rights reserved. Purchase of this unit entitles the purchaser the right to reproduce the pages in limited quantities for classroom use only. Duplication for other individuals, entire schools, an entire school system, or commercial purposes is strictly forbidden without written permission from the author: Copying any part of this product and/or placing it on the internet in any form is strictly forbidden.

## CLIP ART WAS EITHER CREATED FOR THIS PRODUCT OR DOWNLOAD FROM

https://openclipart.org


Special thanks to the3am teacher for providing some of the borders.
Http://the3amteacher.blogspot.com/
sraphic desisn With
education in mind.

